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Distributed Delaunay Triangulation
Distributed Graph-cut Formulation
Distributed Graph-cut Optimization
Distributed Surface Extraction
Results

Distributed Delaunay Triangulations in CGAL ?
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Watertight Surface Reconstruction

▶ Geospatial point clouds :

▶ Aerial LiDAR
▶ Mobile mapping

LiDAR
▶ Photogrammetry

▶ Desired output

▶ Watertight surface

▶ Example application :

▶ Flooding
Simulation
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▶ Geospatial point clouds :

▶ Aerial LiDAR
▶ Mobile mapping

LiDAR
▶ Photogrammetry

▶ Desired output

▶ Watertight surface

▶ Example application :

▶ Flooding
Simulation

LIDAR HD = High resolution scanning (>30
points/m2) on the whole French territory :
https://geoservices.ign.fr/lidarhd
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▶ Example application :

▶ Flooding
Simulation

Watertight surface: boundary surface between outside
volumes (air) and inside volumes (objects)
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Watertight Surface Reconstruction : algorithm

3D Segmentation

▶ Binary volume segmentation
(Inside / outside)

⇒ Surface is extracted at the
interface between inside cells and
outside cells

Algorithm :

▶ Volume partitioning

▶ Graph-cut Formulation

▶ Graph-cut Optimization

▶ Surface Extraction
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Results : Merging aerial and ground-based point clouds
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2
Distributed
Watertight Surface
Reconstruction



4 main steps

Where are the scalability bottlenecks ?

▶ Delaunay Triangulation Global optimization !

▶ Graph-cut formulation Embarrassingly Parallel !

▶ Graph-cut classification Global optimization !

▶ Surface extraction Embarrassingly Parallel !
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Delaunay Triangulation (DT)

Delaunay condition : empty circumsphere
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Delaunay Triangulation (DT)

Delaunay condition : empty circumsphere
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Delaunay Triangulation (DT)

Voronöı diagram : dual of Delaunay triangulation
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Distributing Delaunay Triangulation

Objectives:

▶ Scaling to billions or trillions of points using tiling on any
computer (from laptop to spark or HPC clusters)

▶ No hard memory requirements : low memory just takes longer

▶ Limit communications and synchronizations.

Computing in parallel local DTs (independently within each tile) as
an initial triangulation to be repaired to be Delaunay.
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Star Splaying
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Proposal

Star Splaying Approach at the tile level (1-rings → local DTs)

▶ Initialize

▶ Tile points spatially
▶ Compute local DTs
▶ Broadcast axis-extreme

points

▶ While points are sent

▶ Insert points received
by each tile (in batch)

▶ Send points with new
tile adjacencies

▶ Local DTs are now local views
of the global DT

▶ Simplify local DTs

: Local vertices, : Foreign vertices, : Redundant foreign vertices,

: Local cells, : Mixed cells, : Foreign cells.
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Convergence

Why does it work ? Does it converge ?

We’re good ! (It’s even a bit overkill...), because :

▶ All axis-extreme points are sent to all tiles

▶ So each tile receives the lexicographically minimum vertex

▶ Maintaining a local DT is equivalent to maintaining consistent
1-rings for its local points
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Resultats : Distributed Delaunay Triangulation of 1.9 billion points

Shared cells

Local cells

1 2
1
Provably Consistent Distributed Delaunay Triangulation - ISPRS Annals (2020), 195–202

2
Tile & merge: Distributed Delaunay triangulations for cloud computing - 2019 IEEE International Conference

on Big Data (Big Data), 1613-1618
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Distributed Graph-cut Formulation

Embarrassingly parallel :
▶ The graph is the tetrahedron adjacency graph

▶ 1 node per tetrahedron
▶ 1 edge per triangle

▶ The Graph-cut energy terms are accumulated on each
tetrahedron and each edge for each observation
▶ cf undistributed case, many energies exist in the literature.
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Distributed Graph-cut Optimization : Overview

▶ The graph is split into unconnected graphs (1 per tile) by
considering nodes for local and shared tetrahedra only

▶ Capacities of edges that are replicated in multiple tiles are
divided by the replication count.

▶ Lagrangian variables are added to enforce consistent labels
across replicated nodes.

▶ Algorithm runs until convergence 3:
▶ In parallel, solve the graph cut sub-problem in each tile
▶ Update the Lagrangian variables

3
Efficiently distributed watertight surface reconstruction - International Conference on 3D Vision (3DV), 2021
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Distributed Graph-cut Optimization : Iterations

1 iteration

3 iterations 15 iterations 30 iterations
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Distributed Surface Extraction

Embarrassingly parallel :

▶ Each tile yields independently its surface triangles (=between
inside and outside tetrahedra) thanks to replicated tetrahedra
with consistent labels.
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x
1→

2,1

x 2
→

1
,1

x
2→

3,1

x 3
→

2
,1

x
1→

2,2

x 2
→

1,
2

x
2→

3,2

x 3
→

2,
2

P

P1 P I
1

PS
1 T1

T m
1 T x ,0

1

x01

T x ,1
1

x11

T x ,t
1

xt1

M1

P2 P I
2

PS
2 T2

T m
2 T x ,0

2

x02

T x ,1
2

x12

T x ,t
2

xt2

M2

P3 P I
3

PS
3 T3

T m
3 T x ,0

3

x03

T x ,1
3

x13

T x ,t
3

xt3

M3

Tiling PCA/Subsampling Delaunay tri Mass computation Volumetric segmentation Surface extraction

: Point set, : DT, : Cell set, : Mesh, : Union operator,
: C++ call.

20/29



Distributed Watertight Surface Reconstruction

x
1→

2,1

x 2
→

1
,1

x
2→

3,1

x 3
→

2
,1

x
1→

2,2

x 2
→

1,
2

x
2→

3,2

x 3
→

2,
2

P

P1 P I
1

PS
1 T1

T m
1 T x ,0

1

x01

T x ,1
1

x11

T x ,t
1

xt1

M1

P2 P I
2

PS
2 T2

T m
2 T x ,0

2

x02

T x ,1
2

x12

T x ,t
2

xt2

M2

P3 P I
3

PS
3 T3

T m
3 T x ,0

3

x03

T x ,1
3

x13

T x ,t
3

xt3

M3

Tiling PCA/Subsampling Delaunay tri Mass computation Volumetric segmentation Surface extraction

: Point set, : DT, : Cell set, : Mesh, : Union operator,
: C++ call.

20/29



Distributed Watertight Surface Reconstruction

x
1→

2,1

x 2
→

1
,1

x
2→

3,1

x 3
→

2
,1

x
1→

2,2

x 2
→

1,
2

x
2→

3,2

x 3
→

2,
2

P

P1 P I
1

PS
1 T1

T m
1 T x ,0

1

x01

T x ,1
1

x11

T x ,t
1

xt1

M1

P2 P I
2

PS
2 T2

T m
2 T x ,0

2

x02

T x ,1
2

x12

T x ,t
2

xt2

M2

P3 P I
3

PS
3 T3

T m
3 T x ,0

3

x03

T x ,1
3

x13

T x ,t
3

xt3

M3

Tiling PCA/Subsampling Delaunay tri Mass computation Volumetric segmentation Surface extraction

: Point set, : DT, : Cell set, : Mesh, : Union operator,
: C++ call.

20/29



Distributed Watertight Surface Reconstruction

x
1→

2,1

x 2
→

1
,1

x
2→

3,1

x 3
→

2
,1

x
1→

2,2

x 2
→

1,
2

x
2→

3,2

x 3
→

2,
2

P

P1 P I
1

PS
1 T1

T m
1 T x ,0

1

x01

T x ,1
1

x11

T x ,t
1

xt1

M1

P2 P I
2

PS
2 T2

T m
2 T x ,0

2

x02

T x ,1
2

x12

T x ,t
2

xt2

M2

P3 P I
3

PS
3 T3

T m
3 T x ,0

3

x03

T x ,1
3

x13

T x ,t
3

xt3

M3

Tiling PCA/Subsampling Delaunay tri Mass computation Volumetric segmentation Surface extraction

: Point set, : DT, : Cell set, : Mesh, : Union operator,
: C++ call.

20/29



Distributed Watertight Surface Reconstruction

x
1→

2,1

x 2
→

1
,1

x
2→

3,1

x 3
→

2
,1

x
1→

2,2

x 2
→

1,
2

x
2→

3,2

x 3
→

2,
2

P

P1 P I
1

PS
1 T1

T m
1 T x ,0

1

x01

T x ,1
1

x11

T x ,t
1

xt1

M1

P2 P I
2

PS
2 T2

T m
2 T x ,0

2

x02

T x ,1
2

x12

T x ,t
2

xt2

M2

P3 P I
3

PS
3 T3

T m
3 T x ,0

3

x03

T x ,1
3

x13

T x ,t
3

xt3

M3

Tiling PCA/Subsampling Delaunay tri Mass computation Volumetric segmentation Surface extraction

: Point set, : DT, : Cell set, : Mesh, : Union operator,
: C++ call.

20/29



Distributed Watertight Surface Reconstruction

x
1→

2,1

x 2
→

1
,1

x
2→

3,1

x 3
→

2
,1

x
1→

2,2

x 2
→

1,
2

x
2→

3,2

x 3
→

2,
2

P

P1 P I
1

PS
1 T1

T m
1 T x ,0

1

x01

T x ,1
1

x11

T x ,t
1

xt1

M1

P2 P I
2

PS
2 T2

T m
2 T x ,0

2

x02

T x ,1
2

x12

T x ,t
2

xt2

M2

P3 P I
3

PS
3 T3

T m
3 T x ,0

3

x03

T x ,1
3

x13

T x ,t
3

xt3

M3

Tiling PCA/Subsampling Delaunay tri Mass computation Volumetric segmentation Surface extraction

: Point set, : DT, : Cell set, : Mesh, : Union operator,
: C++ call.

20/29



Results on a scene with 350 million points 4

▶ Implementation :
▶ C++/CGAL processes
▶ Apache Spark scheduling (24 cores)

▶ Computing time: 2h20

4Efficiently distributed watertight surface reconstruction - International
Conference on 3D Vision (3DV), 2021
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3
Distributed Delaunay
Triangulations in
CGAL ?



The Computational Geometry Algorithms Library
http://www.cgal.org

#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>

#include <CGAL/Delaunay_triangulation_3.h>

#include <CGAL/IO/read_las_points.h>

typedef CGAL:: Exact_predicates_inexact_constructions_kernel K;

typedef CGAL:: Delaunay_triangulation_3 <K> Triangulation;

typedef typename Triangulation ::Point Point;

int main(int argc , char*argv [])

{

char* const* begin = argv + 1; // first filename of a las file

char* const* end = argv + argc; // after the last filename of a las file

Triangulation tri;

for(char * const* fname = begin; fname != end; ++ fname) {

std:: ifstream in(*fname , std:: ios_base :: binary );

std::vector <Point > points;

CGAL::IO:: read_LAS(in , std:: back_inserter (points ));

tri.insert(points.begin(), points.end ());

}

return EXIT_SUCCESS;

}
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#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>

#include <CGAL/Delaunay_triangulation_3.h>

#include <CGAL/IO/read_las_points.h>

.

.

.

.

.

.

.

.

.
typedef CGAL:: Exact_predicates_inexact_constructions_kernel K;

.

.
typedef CGAL:: Delaunay_triangulation_3 <K> Triangulation;

.
typedef typename Triangulation ::Point Point;

.

.

.

.

.

int main(int argc , char*argv [])

{

char* const* begin = argv + 1; // first filename of a las file

char* const* end = argv + argc; // after the last filename of a las file

Triangulation tri;

for(char * const* fname = begin; fname != end; ++ fname) {

std:: ifstream in(*fname , std:: ios_base :: binary );

std::vector <Point > points;

CGAL::IO:: read_LAS(in , std:: back_inserter (points ));

tri.insert(points.begin(), points.end ());

}

return EXIT_SUCCESS;

}

Non-distributed CGAL code
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#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>

#include <CGAL/Delaunay_triangulation_3.h>

#include <CGAL/IO/read_las_points.h>

#include <CGAL/Triangulation_vertex_base_with_info_3.h>

#include <CGAL/DDT/traits/Vertex_info_property_map.h>

.

.

.

.

.

typedef unsigned char Tile_index;

typedef CGAL:: Exact_predicates_inexact_constructions_kernel K;

typedef CGAL:: Triangulation_vertex_base_with_info_3 <Tile_index , K> Vb;

typedef CGAL:: Triangulation_data_structure_3 <Vb > TDS;

typedef CGAL:: Delaunay_triangulation_3 <K, TDS > Triangulation;

typedef CGAL::DDT:: Vertex_info_property_map <Triangulation > Property;

typedef typename Triangulation ::Point Point;

.

.

.

.

.

int main(int argc , char*argv [])

{

char* const* begin = argv + 1; // first filename of a las file

char* const* end = argv + argc; // after the last filename of a las file

Triangulation tri;

for(char * const* fname = begin; fname != end; ++ fname) {

std:: ifstream in(*fname , std:: ios_base :: binary );

std::vector <Point > points;

CGAL::IO:: read_LAS(in , std:: back_inserter (points ));

tri.insert(points.begin(), points.end ());

}

return EXIT_SUCCESS;

}

Store the Tile index in the triangulations
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#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>

#include <CGAL/Delaunay_triangulation_3.h>

#include <CGAL/DDT/tile_points/LAS_tile_points.h>

#include <CGAL/Triangulation_vertex_base_with_info_3.h>

#include <CGAL/DDT/traits/Vertex_info_property_map.h>

#include <CGAL/DDT/traits/Triangulation_traits_3.h>

#include <CGAL/DDT/serializer/File_serializer.h>

#include <CGAL/Distributed_triangulation.h>

#include <CGAL/DDT/scheduler/Multithread_scheduler.h>

#include <CGAL/DDT/IO/write_pvtu.h>

typedef unsigned char Tile_index;

typedef CGAL:: Exact_predicates_inexact_constructions_kernel K;

typedef CGAL:: Triangulation_vertex_base_with_info_3 <Tile_index , K> Vb;

typedef CGAL:: Triangulation_data_structure_3 <Vb > TDS;

typedef CGAL:: Delaunay_triangulation_3 <K, TDS > Triangulation;

typedef CGAL::DDT:: Vertex_info_property_map <Triangulation > Property;

typedef typename Triangulation ::Point Point;

typedef CGAL::DDT:: LAS_tile_points <Point > Points;

typedef CGAL:: Distributed_point_set <Point , Tile_index , Points > DPointset;

typedef CGAL::DDT:: Multithread_scheduler Scheduler;

typedef CGAL::DDT:: File_serializer <Triangulation , Property > Serializer;

typedef CGAL:: Distributed_triangulation <Triangulation , Property , Serializer >

DTriangulation;

int main(int argc , char*argv [])

{

char* const* begin = argv + 1; // first filename of a las file

char* const* end = argv + argc; // after the last filename of a las file

DPointset points(begin , end);

Scheduler scheduler (12 /* threads */);

DTriangulation tri(3 /* 3D */, 4 /* tiles in memory */, Serializer("tmp"));

tri.insert(scheduler , points );

tri.write(scheduler , CGAL::DDT:: PVTU_serializer("out")); // -> paraview

return EXIT_SUCCESS;

}

Distributed Point Set : loads lazily LAS files
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#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>

#include <CGAL/Delaunay_triangulation_3.h>

#include <CGAL/DDT/tile_points/LAS_tile_points.h>

#include <CGAL/Triangulation_vertex_base_with_info_3.h>

#include <CGAL/DDT/traits/Vertex_info_property_map.h>

#include <CGAL/DDT/traits/Triangulation_traits_3.h>

#include <CGAL/DDT/serializer/File_serializer.h>

#include <CGAL/Distributed_triangulation.h>

#include <CGAL/DDT/scheduler/Multithread_scheduler.h>

#include <CGAL/DDT/IO/write_pvtu.h>

typedef unsigned char Tile_index;

typedef CGAL:: Exact_predicates_inexact_constructions_kernel K;

typedef CGAL:: Triangulation_vertex_base_with_info_3 <Tile_index , K> Vb;

typedef CGAL:: Triangulation_data_structure_3 <Vb > TDS;

typedef CGAL:: Delaunay_triangulation_3 <K, TDS > Triangulation;

typedef CGAL::DDT:: Vertex_info_property_map <Triangulation > Property;

typedef typename Triangulation ::Point Point;

typedef CGAL::DDT:: LAS_tile_points <Point > Points;

typedef CGAL:: Distributed_point_set <Point , Tile_index , Points > DPointset;

typedef CGAL::DDT:: Multithread_scheduler Scheduler;

typedef CGAL::DDT:: File_serializer <Triangulation , Property > Serializer;

typedef CGAL:: Distributed_triangulation <Triangulation , Property , Serializer >

DTriangulation;

int main(int argc , char*argv [])

{

char* const* begin = argv + 1; // first filename of a las file

char* const* end = argv + argc; // after the last filename of a las file

DPointset points(begin , end);

Scheduler scheduler (12 /* threads */);

DTriangulation tri(3 /* 3D */, 4 /* tiles in memory */, Serializer("tmp"));

tri.insert(scheduler , points );

tri.write(scheduler , CGAL::DDT:: PVTU_serializer("out")); // -> paraview

return EXIT_SUCCESS;

}

Distributed Triangulation : starsplaying with the Scheduler
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Distributed Delaunay Triangulations in CGAL ?

▶ Star Splaying works in all dimensions:
▶ Wraps the 2d/3d/static-Nd/dynamic-Nd specific calls, the rest

being mostly unaware of the ambient dimension

▶ Scheduler: implements various scheduling policies
▶ Sequential, Multithread, TBB... (MPI is WIP)

▶ A vertex is local if its id is equal to the tile id

▶ Serializer: memory (un)loading for out-of-core or
streaming use cases

▶ Distributed point set loads lazily point sets.

▶ Distributed triangulation provides vertex/facet/cell
iterators over the overall triangulation, hiding the tiling.
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Merci.

Mathieu Brédif
Laurent Caraffa
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